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SUMMARY

The paper presents a new formulation of the integral boundary element method (BEM) using subdomain
technique. A continuous approximation of the function and the function derivative in the direction
normal to the boundary element (further ‘normal �ux’) is introduced for solving the general form of
a parabolic di�usion-convective equation. Double nodes for normal �ux approximation are used. The
gradient continuity is required at the interior subdomain corners where compatibility and equilibrium
interface conditions are prescribed. The obtained system matrix with more equations than unknowns
is solved using the fast iterative linear least squares based solver. The robustness and stability of the
developed formulation is shown on the cases of a backward-facing step �ow and a square-driven cavity
�ow up to the Reynolds number value 50 000. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: boundary element method; incompressible viscous �ow; stream function-vorticity
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1. INTRODUCTION

The stability of boundary element method (BEM) at high Reynolds number value �ows is
common problem to all BEM formulations. In the available literature, the highest Reynolds
number computed using BEM is found to be 15 000 for the well-known test case of the driven
cavity �ow by authors Rek and �Skerget [1]. In their work and also in earlier papers dealing
with the BEM, the solution domain is treated as a single entity with the system matrix full
and non-symmetric demanding a great amount of computer memory and CPU. This matrix is
expensive to solve for large problems. The economics of BEM computation is considerably
improved using the subdomain technique (also known as a method of domain decomposition
or multidomain method) in which the original domain is divided into subdomains and the
full integral formula is applied on each of them, see References [2, 3]. Let us review some of
the highest Reynolds number value computed for the case of driven cavity �ow using BEM
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and subdomain technique below. Re=3200 by Hriber�sek and �Skerget [4] who used velocity
vorticity formulation. Practically the same formulation is used by Young et al. [5], but only
up to the Re=2000. The poly-region BEM using penalty formulation of the Navier–Stokes
equations by Grigoriev and Dargush [6] reached Re=5000, which is the highest value found
when using subdomain technique. The dual reciprocity BEM was used by Florez and Power
[7] for computations up to Re=1000. In this paper, we are going to show that the stability
of BEM is not decreased by using the subdomain technique.
By using the subdomain technique, the compatibility and equilibrium interface conditions

are enforced at the common interface between adjacent subdomains. The implementation of the
subdomain technique in the limiting case, i.e. the subdomain becomes similar to the element
in the FEM, the resulting coe�cient matrix is as sparse as that of the FEM, and thus suitable
for fast iterative solvers, see Reference [4].
Overdetermined system matrix: While using continuous element interpolation of high or-

ders, the application of matching conditions at the common interface leads to an overdeter-
mined system of algebraic equations. If the overdetermined matrix is reduced to a squared
one by ignoring some of the boundary integral equations, the reduced system matrix is not
consistent with the initial one, resulting in an unstable numerical scheme for Reynolds number
higher than 1000 in the case of driven cavity �ow, see Grigoriev and Fafurin [8]. In their
next work [6], the overdeterminancy of the system matrix is relieved using the grid with
hexagonal subdomains. Thus, the number of linear independent equations written for the in-
ternal vertex node becomes equal to the degrees of freedom. The stability of the algorithm is
demonstrated in the case of driven cavity �ow at Reynolds number value 5000 using primitive
variables and pressure penalty function. In the previous work of Ram�sak and �Skerget [9] the
initial overdetermined matrix is not reduced but solved in linear least-squares sense using fast
iterative solver of Paige and Saunders [10]. The same solver by Paige and Saunders is also
applied in the subdomain dual reciprocity method by authors Florez and Power [7], but only
up to Re=1000 for the case of driven cavity �ow.
A stream function-vorticity formulation of Navier–Stokes equations for 2D incompressible

�ows provides no direct boundary condition for vorticity at the zero-slip walls. In practice, the
vorticity boundary condition is computed locally from near wall distribution of stream function
values together with the vorticity de�nition in general not satisfying vorticity solenoidity
condition, see Ghia et al. [11]. The signi�cant advantage of the present BEM numerical
scheme is compute boundary vorticities implicitly from the stream function transport equation.
Thus, no di�erencing is needed from near boundary distribution of stream function values,
which may decrease accuracy.
The main aim of the present work is to develop a stable subdomain BEM formulation for

solving a general form of a parabolic di�usion-convective equation with convection dominating
over di�usion. The developed numerical technique is general enough and well prepared for
solving any problems governed by this type of di�erential equations and could be extended
on 3D.
The structure of the paper follows. In Section 2, the governing equations of stream function-

vorticity formulation are stated. In Section 3, the general form of a di�erential parabolic
di�usion-convective equation is written in order to make the starting point for the following
sections clearer. The integral representation is explained brie�y in Section 4 while the extended
discrete representation is discussed in Section 5. Some details regarding the solution of the
overdetermined system matrix are shown in Section 6. The developed BEM formulation is
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A SUBDOMAIN BEM FOR HIGH-REYNOLDS LAMINAR FLOW 817

applied to a stream function-vorticity formulation of Navier–Stokes equations. Computational
algorithm is described in Section 7. In Section 8 the numerical examples are represented with
a detailed discussion, to be followed by conclusions.

2. GOVERNING EQUATIONS

In this paper, the incompressible Navier–Stokes equations for stream function-vorticity for-
mulation are solved. In two dimensions, the stream function � equation can be written as the
elliptic PDE

@2�
@xi@xi

= − ! (1)

and the vorticity ! transport equation as the parabolic PDE

@!
@t
+ vj

@!
@xj
= �

@2!
@xi@xi

(2)

where the velocity vector vj is

vj=
(
@�
@y

;−@�
@x

)
(3)

2.1. Boundary conditions

The boundary condition at the walls yields the known stream function value

�= �� (4)

and its derivative in the normal direction to the wall

@�
@n
= vt (5)

where vt is the known tangential velocity. As it is well known, this provides no direct condition
for the wall vorticity. If the numerical techniques like FEM and FDM are used, the wall
vorticity !J is computed locally from a near wall stream function distribution. In the work
of Ghia et al. [11] the second-order accurate formula is used

!J = − @2�
@y2

= − �J+1 − 2�J +�J−1
�y2

generally not satisfying the vorticity solenoidity condition. In the present BEM numerical
algorithm, wall vorticities !	 are computed implicitly from the stream function transport
equation (1), because � and its normal derivatives are both known as boundary conditions.
Thus, the BEM integral equations are available at the solution domain boundary 	 for the
unknown vorticities !	. This is the signi�cant advantage of BEM against other mentioned
numerical techniques.
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3. DIFFERENTIAL REPRESENTATION OF PARABOLIC DIFFUSION-CONVECTIVE
EQUATION

The transport equation for stream function and vorticity can be written in general form as

a
@2u

@xj@xj
− @u

@t
− @vju

@xj
+ S(xj; u)=0 (6)

where u is the scalar �eld function, a is a constant di�usivity and S is source term.
By using �nite di�erence approximation the �eld function time derivative at time level l

and time increment �t= tl − tl−1 is written as

@u
@t

≈ ul − ul−1

�t

The contribution of the previous time step value is added to the source term S as

S=
ul−1

�t

A semi-implicit approach based on the backward Euler scheme as the linearization technique
for the convective term, the di�erential representation of the parabolic di�usion-convective
equation can be written in the �nal form as

a
@2ul

@x2j
− ul

�t
− @vl−1j ul

@xj
+ Sl−1 = 0 (7)

For the sake of clarity the superscript l for the time level shall be omitted in the future text.
Boundary conditions on 	=	1 + 	2 and initial conditions in domain 
 must be known

u= �u; in 	1 for t¿to (8)

@u
@n
=

@u
@n

in 	2 for t¿to (9)

u= �uo in 
 for t= to (10)

In order to make system matrices sparse and block banded the subdomain technique is
used. Therefore, at the interface boundaries between subdomains I and II the compatibility
interface condition for u has to be applied

u |I = u |II (11)

and the equilibrium interface condition

�
@u
@n

∣∣∣∣
I
= −�

@u
@n

∣∣∣∣
II

(12)

where � is the di�usion factor for the sake of generality. In the case of di�usion factor con-
tinuity (�I = �II) the equilibrium interface condition is reduced so that it becomes equivalent
to the normal �uxes.
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4. INTEGRAL REPRESENTATION OF PARABOLIC DIFFUSION-CONVECTIVE
EQUATION

The general form of the di�erential parabolic di�usion-convective equation (7) can be trans-
formed into an equivalent integral statement, see References [12, 13],

0 =−c(�)u(�)− a
∫
	
u
@u?

@n
d	 + a

∫
	

@u
@n

u? d	 di�usion

−
∫
	
uvjnju? d	 +

∫


uvj

@u?

@xj
d
 convection

+
∫


Su? d
; source S (13)

where nj is the unit normal vector to the boundary element at the nodal point. The �rst Green
identity for arbitrary �eld function fj has been applied to the convection term

∫



@fj

@xj
u? d
=

∫
	
fjnju? d	−

∫


fj

@u?

@xj
d


The variable u? is the modi�ed Helmholtz fundamental solution, i.e. the solution of the
equation

@2u?

@xj@xj
− �2u? + �(�; s)=0 (14)

and given for the plane case as

u? =
1
2�

K0(�r)

@u?

@xj
nj =

rjnj
2�r2

�rK1 (�r)
(15)

where the parameter � is de�ned as

�2 =
1

a�t
(16)

K0 and K1 are the modi�ed Bessel functions of the second kind and rj(�; s) is the vector from
the source point � to the reference �eld point s, e.g. rj= xj(�)− xj(s) for j=1; 2, while r is
its magnitude r= | rj |.
Other fundamental solutions can be applied, e.g. elliptic di�usion-convective, see Reference

[14], but in all presented numerical examples, the modi�ed Helmholtz fundamental solution
is used.
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5. DISCRETE REPRESENTATION OF PARABOLIC DIFFUSION-CONVECTIVE
EQUATION

5.1. Introduction
Notation: The integral equation (13) is valid for any arbitrary geometry. In order to distinguish
the solution domain 
 and its exterior boundary 	 from the subdomain geometry, from now
on the subdomain domain is denoted by 
s and the subdomain boundary by 	s consistently.
Discontinuous elements: The development of the present numerical scheme originated from

the work of authors �Skerget et al. [14]. The �eld function u and its normal �ux @u=@n are
computed explicitly from discretized BEM integral equations in the implicit matrix system.
For this reason the unit normal vector in the normal �ux interpolation nodal point has to
be known. In the vertex of the rectangular subdomain, the normal direction is unde�ned. In
Reference [14] the problem is solved by using the discontinuous approximation of function
and normal �ux, see left-hand side of Figure 1. By de�nition, the �rst and major disadvantage
is the discontinuous �eld function approximation and therefore conservation of �eld function
is not preserved. The second disadvantage is a signi�cant increase in the number of nodal
points, which slows down the rate of solution convergence and increases the computer memory
demands. The third disadvantage is non-unique approximation of the �eld function over the
subdomain using discontinuous boundary nodal points. Either a non-symmetrical interpolation
has to be used or new additional nodal points have to be introduced for domain approximation.
Thus, the discretization of the boundary and domain approximation of the convective term
over subdomain

−
∫
	s
uvjnju? d	s +

∫

s

uvj
@u?

@xj
d
s

do not use the same function interpolation nodal points, causing unstability at the convection
dominated �ows. Using the discontinuous numerical scheme developed in Reference [14] the
highest computed Reynolds number value is 3200 in the case of the �ow in a closed square
driven cavity.

Figure 1. Discontinuous function and normal �ux approximation in the classic subdomain
BEM formulation (left), by authors �Skerget et al. [14], and mixed boundary elements
(right), Ram�sak and �Skerget [9]. The × represents �eld function u nodal points while the

◦ represents a normal �ux @u=@n nodal points.
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Mixed elements: The idea of mixed elements represented in Ram�sak and �Skerget [9] is an
alternative approach in BEM. The basic idea of mixed elements is to split the �eld function
and normal �ux nodal points to keep the advantages of function continuous approximation and
to avoid not uniquely de�ned unit normal vectors of normal �ux interpolation nodal points.
Therefore, the function is approximated using continuous interpolation polynomials, while nor-
mal �ux is interpolated using discontinuous interpolation polynomials. As a consequence, the
advantages of continuous �eld function approximations are retained and its conservation is
preserved while the normal �ux values are modelled in a proper way. While using continuous
elements of high orders, the application of the matching conditions of common interfaces, i.e.
the matrix assembly, leads to an over-determined system of algebraic equations. Instead of
using one of the several schemes that reduce the over-determined system to a closed system,
see Reference [15], the over-determined system matrix is solved in a least squares sense. Us-
ing the same function interpolation nodal points for boundary and domain discretization of the
convective term improves the stability of the mixed elements. The highest computed Reynolds
number value has increased from 3200 to 10 000 in the case of the driven cavity �ow.
The present formulation represents the continuity of the mixed elements. Both numerical

schemes used the identical �eld function discretization, while the normal �ux approximation
is di�erent.

5.2. Function approximation

In the general case, the function approximation over the boundary element could be a linear
interpolation or even higher. The present work deals with the quadratic interpolation polyno-
mials �n, see left-hand side of Figure 2,

�n=
1
2




−�+ �2

1− �2

�+ �2




(17)

where �∈ [−1; 1] is local co-ordinate frame and n the degree of freedom (n=3).

N=8 M=12

n=3
n=3

Figure 2. Continuous quadratic approximation over boundary element n=3 and subdomain
approximation N =8 (left). Continuous normal �ux approximation over boundary element
(n=3) using double boundary nodes (�gure). The × represents function u boundary nodes

and the ◦ represents normal �ux @u=@n boundary nodes.
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The subdomain is surrounded by four boundary elements, see right-hand side of Figure 2.
The two neighbouring boundary elements share the same boundary nodal point, let us call it
the subdomain vertex, with only one (un)known value. Therefore, the function is approximated
using continuous and single boundary nodal points, without need for double points.
Next, the function domain approximation has to be dealt. While using di�erent nodal points

for the function approximation over the boundary elements and domain, see Reference [14],
the discretization of the boundary and domain integral of the convective term in the bound-
ary integral equation becomes the source of numerical instabilities in convection-dominated
�ows. Thus the same interpolation nodal points for boundary and domain approximation are
preferable in a BEM discretization. The function domain interpolation �N is biquadratic using
N =8 boundary nodal points

�N =
1
4




−1 + ��+ �2 + �2 − �2� − ��2

2− 2� − 2�2 + 2�2�
−1− ��+ �2 + �2 − �2�+ ��2

2 + 2� − 2�2 − 2��2

−1 + ��+ �2 + �2 + �2�+ ��2

2 + 2� − 2�2 − 2�2�
−1− ��+ �2 + �2 + �2� − ��2

2− 2� − 2�2 + 2��2




(18)

where �; �∈ [−1; 1] are again local co-ordinate frames.
With the interpolation polynomials de�ned, the boundary integrals of the fundamental so-

lution u? over the individual boundary element 	e are written as

hn=
∫
	e
�n @u?

@n
d	e; gn=

∫
	e
�nu? d	e (19)

and domain integrals over individual subdomain 
s

dN
j =

∫

s

�N @u?

@xj
d
s; dN =

∫

s

�Nu? d
s (20)

The integrals are dependent on geometry and material properties. In the case of the Helmholtz
fundamental solution, the remaining variables are only the time increment value and di�usivity.
The integrals have to be computed only once at the beginning of the computation. Details on
the numerical integration are given in Reference [16].
The complete boundary integral equation over the subdomain boundary 	s will be written as

the sum of all individual boundary integrals 	e surrounding the subdomain. In the vertex nodal
point the contribution {h} of both neighbouring boundary integrals 	e could be summed up
as {h′}. The obtained boundary integral over the subdomain boundary 	s has N =4(n−1)=8
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degrees of freedom. The boundary integral discretization has the following form:∫
	s

@u?

@n
u d	s=

4∑
e=1

{∫
	e
�n @u?

@n
d	e

}T
{u}n=

4∑
e=1

{hn}T{u}n=
N=8∑
i=1

{h′}T{u}N (21)

where the last sum represents the loop over N =8 interpolation boundary nodal points. The
boundary integrals {h′} and domain integrals {dj} and {d} over the subdomain (Equation
(20)) share the same nodal points and could be added together at each nodal point.

5.3. Normal �ux approximation

The normal �ux interpolation is more complicated than function interpolation in the previous
section. The exterior boundary nodal points are described separately from the interior boundary
nodal points in the next section where the implementation of equilibrium interface conditions
are dealt with.
As mentioned before, the continuous quadratic approximation of normal �ux is prescribed

to the boundary element, Equation (17). Owing to the lack of uniquely de�ned normal vector
to the boundary in the vertex nodal point, double nodal points are used. Two nodal points
at the vertex of subdomain have the same geometry co-ordinates but di�erent unit normal
vector on each neighbouring boundary element and thus two (un)known values of normal
�ux @u=@n. The boundary integral of normal �ux over complete boundary of subdomain 	 is
computed as a sum of four individual boundary integrals 	e; thus, four elements with three
nodal points each, are written as∫

	s

@u
@n

u? d	s=
4∑

e=1

{∫
	e
�nu? d	e

}T{@u
@n

}n

=
4∑

e=1
{gn}T

{
@u
@n

}n

=
M=12∑
i=1

{g}T
{
@u
@n

}M

(22)

where the last sum represents the loop over all M =12 boundary normal �ux nodal points.

5.4. Discrete formulation of boundary integral equation

Let us write the boundary integral equation (13) for an individual subdomain in discrete form
considering discrete equations for function (21) and normal �ux (22)

0 =−c(�)u(�)− a
N∑
i=1

{h′}T{u}N + a
M∑
i=1

{g}T
{
@u
@n

}M

−
N∑
i=1

{gj}T{uvj}N +
N∑
i=1

{dj}T{uvj}N

+
N∑
i=1

{d}T{S}N (23)

where index i means the sum over N =8 function nodal points and M =12 normal �ux nodal
points of individual subdomain, see Figure 2. The terms containing (un)known function u
could be added together as

0=
N∑
i=1

{−(c(�) + ah′) + (−gj + dj)vj}T{u}N + a
M∑
i=1

{g}T
{
@u
@n

}M

+
N∑
i=1

{d}T{S}N
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The new variable e is introduced as

e= − (c(�) + ah′) + (−gj + dj)vj

and scalar f of known value

f=
N∑
i=1

{d}T{S}N

Using new variables the discretized integral equation for the subdomain is written as

N∑
i=1

{e}T{u}N −
M∑
i=1

{g}T
{
@u
@n

}M

=f (24)

The last equation (24) represents the discrete form of the integral boundary equation (13) at
the source point �. The complete system matrix for one subdomain is obtained by writing
Equation (24) for all subdomain boundary nodal points �=1; M

[E]{u} − [G]
{
@u
@n

}
= {f} (25)

5.5. Implementation of boundary conditions on external boundary

The matrix form of discrete boundary integral equations (25) is transformed to the system of
algebraic equations by applying the boundary conditions (8), the known function value �u on
the boundary 	1 and the known normal �ux value @u=@n on 	2 (9)


[−G]	1

[E]	2





{
@u
@n

}	1
{u}	2


=




−[E]{ �u}	1

[G]

{
@u
@n

}	2

+ {f}

and further to the

[A]{x}= {B} (26)

5.6. Implementation of interface conditions between subdomains

The middle and vertex nodal points of the boundary element are treated di�erently and we
will consider them separately, see Figure 3.

5.6.1. Middle boundary element nodal points. Let us consider two middle points in contact on
the interface between two subdomains I and II , see left-hand side of Figure 3. At subdomain
I the unknown function value at nodal point I is denoted as uI and normal �ux as @u=@nI .
Following the same notation the uII and @u=@nII are unknown values at subdomain II . The
discretized integral boundary equation (24) can be written for subdomain I as

(
N−1∑
i=1

{e}T{u}N−1 + eIuI

)
I

−
(

M−1∑
i=1

{g}T
{
@u
@n

}M−1
+ gI

@u
@n I

)
I

=fI
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subdomain II: x=∂u/∂nII

subdomain I: x=uI 1

2

II

IV

III

I
1

1
1

2

2

2

Figure 3. The middle (left) and the vertex (right) nodal point of the boundary element and implementa-
tion of the interface boundary condition. Subdomain indexes are I; II; II and IV , while the nodal points
indexes are I1; I2; : : : ; IV2. For the sake of clarity, the double vertex nodal points ◦ are written out of

the corner, although they have the same geometrical position as the ×.

and for the subdomain II as(
N−1∑
i=1

{e}T{u}N−1 + eII uII

)
II

−
(

M−1∑
i=1

{g}T
{
@u
@n

}M−1
+ gII

@u
@n II

)
II

=fII

where the integrals with index I are computed for subdomain I and the integrals II for
subdomain II . For the sake of simplicity, the sum terms on the left-hand side of equations will
be omitted in the future. From the interface conditions (11) and (12), two additional equations
are obtained to reduce the number of unknowns from four to two. From the compatibility
interface condition uI = uII let us choose the function value uI at subdomain I as an unknown
value. From the equilibrium interface condition (12) it follows that the second unknown has
to be the normal �ux value @u=@nII at subdomain II . With this unknown chosen, the above
equations are rewritten as

eIuI + gI
�II

�I

@u
@n II

=fI

eII uI − gII
@u
@n II

=fII

to form a closed system of two equations with two unknowns.

5.6.2. Vertex boundary element nodal points. Owing to the topological aspects of the vertex
points, see right-hand side of Figure 3, an implementation of the interface boundary conditions
to the vertex nodal points are not so straightforward as to the middle points. Let us write the
discrete form of the integral boundary equation (24) for subdomain I at vertex nodal point
I; 1 as

eIuI − gI;1
@u
@n I;1

=fI

and in a similar way at the double vertex point I; 2

eIuI − gI;2
@u
@n I;2

=fI (27)
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Additional pairs of equations could be written for subdomains II; III and IV , altogether eight
linear independent equations. The implementation of the function compatibility interface con-
dition is straightforward because of no doubled nodal points in the vertex. Let us set the
unknown function value at the vertex nodal point as uv and rewrite the compatibility interface
condition as

uI = uII = uIII = uIV = uv

The equivalence of the normal �uxes has to be written at double points separately with respect
to the topology, see right-hand side of Figure 3,

�I
@u
@n I;2

=−�II
@u
@n II;1

�II
@u
@n II;2

=−�III
@u
@n III;1

�III
@u
@n III;2

=−�IV
@u
@n IV;1

�IV
@u
@n IV;2

=−�I
@u
@n I;1

(28)

which in the general case could not be further equalized. To summarize, the number of
unknowns is �ve, one function value uv and four normal �uxes values, and eight available
equations, which leads to the overdetermined system matrix.
The number of unknowns can be reduced further using the next approach. At arbitrary

vertex nodal point i with uniquely de�ned normal unit vector (nx; ny) the normal �ux is
de�ned with (

@u
@n

)
i
=
(
nx

@u
@x
+ ny

@u
@y

)
i

where (@u=@x; @u=@y) is gradient. The set of interface equations (28) accounting for the linear
independence of the co-ordinate frame could be rewritten for both axes as

(
�nx

@u
@x

)
i
=−

(
�nx

@u
@x

)
j(

�ny
@u
@y

)
i
=−

(
�ny

@u
@y

)
j

where indexes i; j means arbitrary opposite vertex nodal points from Equations (28). Using
this approach gradient continuity is required at the subdomain vertex points instead of normal
�ux equalization Equation (28).
Let us assign the index v for the unknown vertex gradient value and rewrite the discrete

form of integral equation (27) at arbitrary vertex nodal point i=1; 2; : : : ; 8 with respect to the
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opposite nodal point using index j

eiuv − �j

�i
gi

(
nx; i

@u
@xv

+ ny; i
@u
@yv

)
=fi (29)

The number of unknowns in the interior subdomain vertex has been reduced from �ve to
three, i.e. vertex function uv and gradient (@u=@x)v; (@u=@y)v, while the number of equations
remains eight. As already mentioned the resulting system of equations has more equations
than unknowns, hence it should be solved in the linear least squares sense, which will be
explained in detail in the next section.
The discrete form of integral boundary equation (24) for the internal subdomain accounting

for the interface boundary conditions could be written as

N∑
i=1

{e}T{u}N −
Mm∑
i=1

{g}T
{
�j

�i

@u
@n

}Mm

−
Mv∑
i=1

{g}T
{
�j

�i
nx

@u
@x
+

�j

�i
ny

@u
@y

}Mv

=f (30)

where the sum i=1; M over �ux nodal points is splitted to the middle boundary element
nodal points Mm=4 and vertex nodal points Mv=8.

6. SOLVING THE OVERDETERMINED MATRIX

One of the simplest approaches for solving an over-determined set of algebraic equations

AM×N{x}N = {b}M

where M¿N , is �nding a least squares solution using QR factorization of A for dense matrices
from the lapack library (LLS) [17]. Since in our case the system matrix A is sparse and block
banded, the iterative linear least squares solver of Paige and Saunders [10] (PAIGE) is much
faster at same solution accuracy. The method is based on the bidiagonalization procedure of
Golub and Kahan, for details see Reference [10]. It is analytically equivalent to the standard
method of conjugate gradients.

6.1. Preconditioning

To accelerate the convergence a diagonal preconditioning is applied (PRECOND). For square
systems Ax= b, it means �nding non-singular matrices C1 and C2 that make

B=C1AC2

closer to identity matrix or nearer to a matrix with clustered singular values. Ax= b is equiv-
alent to

C1AC2y=C1b

so

By=C1b

is solved by the iterative method and recovers

x=C2y
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Table I. Comparison of LLS QR factorization for dense matrices and iterative LLS with or
without preconditioning. Nsub means number of subdomains, M and N number of equations
and unknowns, respectively, sparse coe�cient is calculated as number of non-zero elements

in the matrix divided with M ∗ N , Nit is the number of local solver iterations.

Matrix parameters LLS PAIGE PRECOND

Nsub M N Sparse CPU Nit CPU Nit CPU

16=4× 4 216 111 0.124 0.17 129 0.26 190 0.38
64= 8× 8 944 447 0.033 23.0 191 1.6 153 1.2
256= 16× 16 2184 1007 0.015 1435.0 313 10.0 293 9.6
1024= 32× 32 16128 9215 0.002 — 275 37.0 254 34.0
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Figure 4. Non-convergence of the problem without using the preconditioner (left). Decreasing number
of local solver iterations using the preconditioner.

For overdetermined systems the ‘left preconditioner’ C1 = I is an identity orthogonal matrix.
Ideally C2 would approximate R−1, where R comes from the QR factorization, which of course
is not a�ordable to compute. In general an approximate Cholesky factorization is needed to
set the right preconditioner as

C2 =PR−1

where P is some permutation and R is an upper triangular matrix. One of the simplest
approaches is set P= I de�ning R to be the diagonal as the square-root of the diagonals
of ATA

diag(R)=
√
diag(ATA)

The comparison of the presented solvers are made for solving a di�usion-convective problem
known as entry �ow, see Table I. From the table it is evident that the iterative solver is
approximately 100 times faster at higher grid densities. Application of preconditioner results
on approximately 10% speedup in this case. In the case of a driven �ow in the square closed
cavity the number of solver local iterations signi�cantly decreases, see right-hand side of
Figure 4, the resulting speedup is approximately 2. In some strong non-linear cases where
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Figure 5. The convergence and local number of solver iterations depending
on solver stopping criteria TOL.

Table II. The necessary CPU, the number of global
iterations NIT and the solution residue 	 dependency

on the solver stopping criteria TOL.

TOL CPU [s] NIT 	

10−4 — — 5.E-2
10−5 — — 5.E-3
10−6 220 290 1.E-4
10−7 280 273 1.E-4

the convection is dominant over di�usion processes, the use of the preconditioner can be of
crucial matter to achieve the solution convergence, see left-hand side of Figure 4.
The solver stopping criteria TOL is another signi�cant parameter crucial for convergence.

The TOL is a required estimation of the relative error for the solver solution vector. In
Figure 5, the convergence (left) and the number of solver local iterations (right) is plotted
against the global iterations. The TOL values of 10−4 and 10−5 are too high, causing the
solution convergence only to certain values, linearly dependent on TOL. With the tightening
of the TOL, i.e. smaller values, the necessary number of solver local iterations is increasing,
thus increasing solution accuracy and the CPU, see Table II. The optimal selection of TOL
may be a variable during the convergence, i.e. at the �nal stage of global iterations TOL
should be tighter.
The solution convergence criteria 	 is de�ned as the normalized quadratic norm of the

current solution vector ul and the solution from the previous iteration ul−1

	=
‖ul − ul−1‖

‖ul‖
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Figure 6. The solution residum (left) and number of solver local iterations (right) applying the hot start.

6.2. Hot start

In order to speed up the solution another idea named hot start connected is applied. The
basic idea of the hot start is using the solution vector x (Equation (26)) from previous global
iteration as an initial guess x0 in present iteration. The hot start is applied at three stages:

1. computing the new right-hand side vector of known values b0 at Equation (26) from the
initial solution vector x0 as

b0 = b − A · x0
2. solving the change of the solution dx from the system of algebraic equations

A · dx= b0

3. recovering the true solution x from

x= x0 + dx

The test case is driven cavity �ow. From the left-hand side of Figure 6, no signi�cant dif-
ference of vorticity convergence is evident between the hot and cold start. But the right-hand
side of Figure shows a signi�cantly decreased number of local solver iterations resulting in
speedup factor up to 2. At the �nal stages of convergence the solution changes very little, thus
the initial solution vector x0 is already a good estimate to the �nal solution x. That makes the
dx go to zero and reduce the necessary local solver iterations during the convergence, while
at the cold start the necessary number of local iterations remains constant. Note, the results
in Figures 4 and 5 already included the hot start, thus explaining the decreasing number of
local iterations during global convergence.

7. COMPUTATIONAL ALGORITHM

For the sake of clarity let us assume known velocities on the complete boundary 	. The
outlet boundary conditions are explained in the numerical example and require only slight
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modi�cation. Before we proceed, we should note once more that boundary values mean nodes
on the external boundary and domain values are all the rest nodes on the interfaces between the
subdomains. The solution algorithm for stream function-vorticity formulation can be written
as:

1. Choose initial values of domain vorticity !l−1



2. Begin new time step
3. Solve the stream function equation with known boundary conditions for the boundary
stream function � 	, its normal �ux @ =@n	 and known domain vorticities !l−1


 from
previous time step

@2

@xi@xi
( � 	 +  l


)= − (!l
	 +!l−1


 ) (31)

resulting in new domain values of stream function  l

, its derivatives @ =@xi

l

 and bound-

ary vorticities !l
	.

3.1 If necessary, under relaxation of  l

 and !l

	 use URF 
 and URF!	, respectively.
3.2 Set new domain velocities

vlj =
(
@�
@y

;−@�
@x

)l

(32)

implicitly as the result of Equation (31).
4. Solve the vorticity equation using the new vorticity boundary conditions �!l

	 and new
known velocities vlj

!l − !l−1

�t
+ vlj

@!l

@xj
= �

@2

@xi@xi
( �!l

	 +!l

) (33)

resulting in the new domain values of vorticity !l

, its derivatives @!=@xi

l

 and boundary

vorticity normal �uxes @!=@nl
	.

4.1 If necessary, under relaxation of !l

 use URF!
.

5. If convergence is not achieved go to 2.

8. NUMERICAL EXAMPLES

8.1. Scalar di�usion in ‘L’ shape

The laplace equation without sources is solved, physically representing a heat conduction
in a solid or potential �ow. The geometry of the problem and the boundary conditions are
presented in Figure 7.
The minimal possible grid using three subdomains is applied, see right-hand side of

Figure 7. The results are compared with the hypersingular boundary element method (HBEM)
by Rek [16] using the same grid. The potential function u is compared at the vertical pro�le
x=5:0 in Table III. It can be clearly seen that our result �ts the best to the analytical solu-
tion. The main problem represents the concave corner at x=5:0 and y=5:0 where the �ux
solution is singular. The present study has the excellent agreement of six decimal places with
the analytical solution in this corner.
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Figure 7. The geometry and boundary conditions for the scalar di�usion in ‘L’ shape (left). The minimal
possible grid for this case (right).

Table III. Comparison of potential value u at the vertical pro�le x=5:0 for the scalar
di�usion in the ‘L’ shape.

y Anal. HBEM �% Present �%

10.0 0.547 0.553 1.1 0.553 1.1
7.5 0.566 0.523 −7.6 0.572 1.1
5.0 0.667 0.731 9.5 0.667 0.0
2.5 0.868 0.881 1.5 0.857 −1.3
0.0 0.906 0.910 0.4 0.893 −1.4

8.2. Driven cavity �ow

The square-driven cavity �ow has been one of the most attractive test problems for the CFD
community in spite of velocity discontinuity at the cavity corners adjacent to the moving
wall. The results are compared using Ghia et al. [11] work as a benchmark solution to this
problem.
The problem considered here is that of a square cavity x; y=[0; 1] totally �lled with an

incompressible viscous �uid and a moving top wall at a constant velocity.
The test case was solved using two commercial codes: the Fluid Dynamics International

(FIDAP) using the Finite Element Method and the TASC�ow (Advanced Scienti�c Comput-
ing) [18] using the Control Volume Method. The comparison of the three di�erent methods
on an equal grid using the same number of degrees of freedom is performed. The FEM results
at Re=100 are computed without upwinding, while at Re=1000 an upwinding factor of 1.25
was necessary to obtain a good solution. The FVM results are computed as a transient case
using �t=10−3. The convergence criteria being 10−6 (see Figure 8).
Convergence: The results at Re=100 are computed with time step value �t=1016 and

approximately 150 iterations to the default convergence criteria of 	=10−4, see Figure 9.
The boundary vorticity under relaxation value URF!	 and domain vorticity URF!
 have
to be applied to obtain convergence. The optimal values in this case were found to be 0.8
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Figure 8. Driven cavity �ow at Re=100. Velocity pro�les comparison on grid density 10× 6.
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Figure 9. Driven cavity �ow at Re=100. Vorticity distribution on driven
wall (left) and convergence (right).

and 0.1, respectively. The Poisson equation for stream function is numerically easier to solve
and results do not have to be under relaxed URF!
 =1. With higher Reynolds number values
convection dominates di�usivity and the vorticity transport equation becomes more non-linear,
lower URF values have to be applied or shorter time step values. Using short time step values
decreases fundamental solution integrals accuracy, Equations (19) and (20). We found the
optimal value of �t=1:0 at the beginning stage of computation and then restart with higher
value of �t=103 to the accurate steady solution, if necessary. The URF values remain the
same as mentioned, up to Re=10000. At the extreme value of Re=25000 the time step value
has been �t=0:1, URF =0:1, URF!	 =0:1 and URF!
 =0:01. The number of iterations
was approximately 1000, see Figure 10.
A stability of high Reynolds �ow for Re¿10 000: Grigoriev and Dargush [6] stated the

lack of a steady-state solution for two-dimensional �ow in a cavity at Re¿5000. Using BEM
the solution divergate for Re¿7500 in their case. Ghia et al. [11] published results up to
the Re=10000 (see Figures 11–18). Shen [19] found that the �ow converges to a stationary
state for Re up to 10 000 using spectral methods. The �ow loses periodicity for Re ¿ 16 000.
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Figure 10. Driven cavity �ow at Re=25 000. Stream function (left) and vorticity (right) convergence
computed as restart from results at Re=10 000.
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Figure 11. Driven cavity �ow at Re=1000. Velocity pro�les comparison on grid density 10× 6.
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Figure 12. Driven cavity �ow at Re=1000. Velocity pro�les comparison on grid density 20× 6.
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Figure 13. Driven cavity �ow at Re=1000. Vorticity distribution at driven
wall (left) and grid density 10× 6.
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Figure 14. Driven cavity �ow at Re=5000. Velocity pro�les comparison.
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Figure 15. Driven cavity �ow at Re=10 000. Velocity pro�les comparison.
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Figure 16. Driven cavity �ow at Re=10 000. Vorticity distribution at driven wall.
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Figure 17. Driven cavity �ow at Re=25 000 and Re=50 000. Velocity pro�les comparison.

A steady state solution at Re=25000 has been provided by Bhardwaj and Verma [24] using
DNS. Discussion about stability is beyond our scope. The presented BEM numerical algorithm
is stable even at Re=50000 producing a steady-state solution using transient computation.
One should note the existence of new vortex at the upper left corner at Re=25000, see
Figure 19. It becomes stronger at Re=50000, see Figure 20. At the lower right corner the
secondary vortex has the tendency to break on two new vortex at slightly higher Re value,
which supposed to be investigated in future work.
Fundamental solution: It is well known that using velocity dependent fundamental solution

increases the stability of BEM. Our experience does not shows signi�cant improvement using
it, certainly not worth the increasing CPU demands computing new integrals for each iteration.
We cannot prove that, but the reason is probably the linear least squares solver averaging the
in�uence of eight BEM equations at internal subdomain vertex nodal point, thus neglecting
the non-symmetrical velocity contribution by fundamental solution in the mean �ow direction.
An accuracy of developed BEM is most evident on the extreme coarse grid densities,

starting with the grid of 10× 10 subdomains with the symmetrically non-equidistant, the two-
way bias grid seed with ratio longest=shortest element of value 6 (further assigned as grid
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Figure 18. Driven cavity �ow at Re=10 000. Stream line pattern (left) and vorticity con-
tours (right) at �nest grid 60× 20. Stream function level values are: −1e-10, −1e-7, −1e-5,
−1e-4, −0:01, −0:03, −0:05, −0:07, −0:09, −0:1, −0:11, −0:115, −0:1175, 1e-8, 1e-7, 1e-6,
1e-5, 5e-5, 1e-4, 2.5e-4, 5e-4, 1e-3, 1.5e-3, 3e-3 (as in Reference [4]). Vorticity levels are:

−3, −2, −1, −0:5, 0, 0.5, 1, 2, 3, 4, 5 (as in Reference [11]).

Figure 19. Driven cavity �ow at Re=25 000. Stream line pattern (left) and vorticity contours (right)
at �nest grid 80× 60. Contour level values are as in Figure 18.

density ‘10× 6’, see Figure 13) where the velocity pro�les agree excellently with the reference
solution for Re=100 and 1000, see Figures 8–12. FEM and FVM results fail to account for
viscous forces at such low grid densities with approximately equal degrees of freedom resulting
in much lower velocity peaks. At higher grid densities the di�erence between results is not
so obvious. The comparison with BEM results provided by Rek [1] shows slightly better
agreement of our results on the same grid density 40× 10, see Figures 15 and 16.
Nodalization analysis or grid sensitivity on centreline velocity pro�les shows relative inde-

pendence and good convergence to reference solutions using higher grid densities, see Figure
11 with grid 10× 6 versus Figure 12 with 20× 6. At higher Re values, the velocity pro�les
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Figure 20. Driven cavity �ow at Re=50 000. Stream line pattern (left) and vorticity contours (right)
at �nest grid 100× 60. Contour level values are as in Figure 18.

agrees very well with reference solution at all computed grid densities. Velocities representing
the stream function derivative equation (32) and computed implicitly from the BEM equations
are also free of numerical dispersion. Boundary vorticity computation (see Equation (31)) is
much more sensitive to the grid density and numerical wiggles, especially near the singular
corners, due to large gradient of nearly step change of tangential velocity boundary condition,
see Figure 13. In the case of driven cavity this seems the most critical part of computation.
While the vorticity peaks near the singular corners are higher with higher grid density, the
velocity pro�les along centrelines are much less sensitive. They are far away from singular
corners. At Re=10000 the grid 20× 20 is obvious to coarse producing weak numerical wig-
gles, see Figure 16. We should note, the maximal vorticity value is an approximately equal
value at this �gure. It appears that the developed BEM numerical algorithm converges despite
weak numerical dispersion. It is natural that if wiggles became too strong, the scheme does
not converge (see Tables IV–VI).
Unfortunately computer demands should be discussed. The grid densities up to 1600 subdo-

mains required neglectful amount of memory, while computing a driven cavity case represent
an overnight job using 400MHz workstation. Higher grid densities using 3600 or 10 000 eight
node quadratic subdomains require 125 or 300MB of memory, while CPU is 2 or 10 min per
one time step, respectively.

8.3. Backward-facing step �ow

There are two main aims of this standard numerical example. The �rst is to show the reg-
ularity of the developed numerical scheme and stream function-vorticity formulation using
the out�ow boundary conditions and thus ful�lment of mass conservation. The second is to
present accuracy on a wide range of grid densities.
The geometry and boundary conditions are presented in Figure 21. The Reynolds number

based on the inlet height 0.5 and average inlet velocity 1.0 is 100, 800 and 1000.
Grids: The computations were carried out on three non-equidistant grids. The �rst extremely

coarse grid is 30× 2–6× 1 using 30 subdomains using one way bias value of 2 in x-direction
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Table IV. Results for vx velocity along the vertical line through the geometric centre of cavity.

Re 100 1000 5000 10 000 25 000 50 000
grid 10× 6 10× 6 20× 6 40× 20 20× 20 60× 20 80× 20 100× 60
Nd:o:f : 341 341 1281 4961 1281 11041 19521 30401

0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.0547 −0.03770 −0.22359 −0.18586 −0.40642 −0.46567 −0.45332 −0.47638 −0.42910
0.0625 −0.04257 −0.24641 −0.20746 −0.42788 −0.46192 −0.44596 −0.46031 −0.42789
0.0703 −0.04738 −0.26835 −0.22787 −0.44178 −0.45036 −0.43243 −0.44175 −0.42354
0.1016 −0.06556 −0.33684 −0.30423 −0.42346 −0.40592 −0.38763 −0.38774 −0.39167
0.1719 −0.10408 −0.38932 −0.38717 −0.33820 −0.33958 −0.32167 −0.32205 −0.32284
0.2813 −0.16098 −0.27189 −0.27942 −0.23481 −0.23263 −0.21960 −0.22348 −0.21924
0.4531 −0.20599 −0.10704 −0.10613 −0.07521 −0.07152 −0.06714 −0.06879 −0.06271
0.5000 −0.20402 −0.06397 −0.06015 −0.03171 −0.02780 −0.02594 −0.02515 −0.01917
0.6172 −0.12363 0.07390 0.05790 0.08019 0.08533 0.08007 0.08773 0.09271
0.7344 0.00943 0.21086 0.18885 0.20268 0.20936 0.19720 0.21036 0.21275
0.8516 0.23827 0.34108 0.33664 0.34723 0.35803 0.33869 0.35428 0.35193
0.9531 0.69024 0.47269 0.47679 0.47753 0.50667 0.48839 0.51378 0.52762
0.9609 0.73854 0.50737 0.51620 0.47681 0.50873 0.49284 0.51895 0.53691
0.9688 0.78960 0.56379 0.58574 0.47776 0.50370 0.49100 0.51662 0.53523
0.9766 0.84221 0.65981 0.66866 0.49785 0.49438 0.48502 0.50468 0.52019
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table V. Results for vy velocity along the horizontal line through the geometric centre of cavity.

Re 100 1000 5000 10 000 25 000 50 000
grid 10× 6 10× 6 20× 6 40× 20 20× 20 60× 20 80× 20 100× 60
Nd:o:f : 341 341 1281 4961 1281 11041 19521 30401

0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.0625 0.09376 0.29472 0.28158 0.43155 0.47447 0.45656 0.48259 0.47509
0.1250 0.10279 0.30938 0.29674 0.44222 0.47044 0.45153 0.47583 0.46038
0.1875 0.11142 0.32162 0.31005 0.44590 0.46113 0.44244 0.46308 0.44786
0.2500 0.12597 0.33954 0.33388 0.44103 0.43934 0.42036 0.43056 0.42715
0.3125 0.16457 0.36891 0.37567 0.36520 0.36502 0.34710 0.35310 0.35492
0.3750 0.17791 0.32826 0.33357 0.28798 0.28531 0.27134 0.27840 0.27932
0.4375 0.17824 0.32187 0.32529 0.27964 0.27681 0.26323 0.27032 0.27129
0.5000 0.05965 0.03410 0.02578 0.01149 0.00851 0.00891 0.00941 0.00759
0.5625 −0.24950 −0.32076 −0.32039 −0.30880 −0.31214 −0.29594 −0.30715 −0.30537
0.6250 −0.23502 −0.43579 −0.42728 −0.37560 −0.38049 −0.36152 −0.37174 −0.37116
0.6875 −0.18208 −0.52176 −0.52629 −0.43089 −0.44042 −0.42061 −0.43174 −0.43350
0.7500 −0.11229 −0.41600 −0.40896 −0.54154 −0.48660 −0.47241 −0.47170 −0.48683
0.8125 −0.09681 −0.37191 −0.35591 −0.56982 −0.51406 −0.50332 −0.47145 −0.49470
0.8750 −0.08098 −0.32155 −0.29764 −0.56851 −0.55569 −0.54797 −0.48489 −0.48545
0.9375 −0.06459 −0.25985 −0.23128 −0.51699 −0.58331 −0.57817 −0.52559 −0.48270
1.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

and only 6 equidistant subdomains in y-direction. The second grid is 60× 2–10× 1 and the
�nest is 120× 2–20× 1.
Convergence: Results at all Re number values are obtained using �t=1:0. The stream func-

tion under relaxation factor is URF =1:0, since the  governing equation is of Poisson type
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Table VI. Results for vorticity along moving boundary.

Re 100 1000 5000 10 000 25 000 50 000
grid 10× 6 10× 6 20× 6 40× 20 20× 20 60× 20 80× 20 100× 60
Nd:o:f : 341 341 1281 4961 1281 11041 19521 30401

0.0625 50.3105 174.436 84.2831 140.503 201.538 184.542 290.400 389.968
0.1250 23.3507 60.0627 52.6517 102.828 145.649 142.261 214.590 298.949
0.1875 16.5955 51.1416 40.9195 91.2248 126.221 134.218 186.676 249.321
0.2500 12.7632 40.3458 32.3196 76.4351 104.896 109.940 181.668 251.847
0.3125 10.5052 27.7116 25.3117 58.3082 85.1456 83.2074 147.548 219.550
0.3750 8.78134 23.7769 20.1473 44.4863 67.5477 62.9283 108.388 160.270
0.4375 7.49459 19.7529 16.6858 36.1961 54.4392 51.2952 85.1226 123.464
0.5000 6.64493 15.6397 14.8310 32.0036 38.1508 45.5952 73.9458 108.304
0.5625 6.20547 15.0865 13.9692 30.5201 43.1701 43.3595 69.9852 100.784
0.6250 6.28753 14.7902 14.0934 30.9304 45.9512 43.7597 70.8356 102.258
0.6875 6.89110 14.7507 14.8087 32.6810 44.1457 46.0866 75.1534 108.791
0.7500 8.24257 16.2630 16.0602 35.3294 46.3567 49.7756 81.9522 122.041
0.8125 10.8698 18.0160 18.3451 38.3662 54.4209 54.1875 89.6403 129.883
0.8750 14.5068 20.9193 23.8935 41.9363 46.3055 58.2146 94.4127 144.097
0.9375 31.5660 30.9000 41.3518 58.9405 75.4742 69.4561 95.9171 116.848

Figure 21. Geometry and boundary conditions for backward-facing step �ow.

and numerically easier to solve than convection–di�usion type vorticity kinetics where domain
vorticity under relaxation is necessarily URFw
 =0:1 and boundary vorticity URFw	 =0:8 at
this Reynolds number value.
Results at Re=100: Stream function and vorticity convergence at Re=100 during the

iterative procedure is shown in Figure 22 for all grid densities (see Table VII). As expected
the stream function converges faster than under relaxed vorticity. Practically the same number
of necessary iterations for all grid densities is encouraging. Figure 23 shows the comparison
of vorticity distribution along lower and upper wall between computational grids. Pro�les
are practically the same for all grid densities. The coarser grid 30× 2–6× 1 produced weak
numerical oscillations at the outlet boundary, which vanished using the highest grid density.
The mass balance is improved from 0.5% at the coarser grid to 0.01% at the �nest grid
density. Using the higher Re number value the mass balance is practically unchanged.
Results at Re=800 are obtained using the restart from Re=100. The necessary number of

additional iterations is approximately 400 for all grid densities. From the wall vorticity dis-
tribution in Figure 24 it is obvious that the grid 30× 2–6× 1 is too coarse, while the results
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Figure 22. Backward-facing step �ow at Re=100. Stream function (left)
and vorticity (right) convergence for all grid densities.

Table VII. Backward-facing step �ow Re=100. X 1
length of lower wall eddy, m mass balance and Nit

number of iterations.

Grid Nsub X 1 m (%) Nit

30× 2–6× 1 180 1.75 0.45 149
60× 2–10× 1 600 1.64 0.10 125
120× 2–20× 1 2400 1.61 0.01 152
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Figure 23. Backward-facing step �ow at Re=100. Distribution of vorticity along lower (left) and upper
(right) wall for all grid densities.

used grids 60× 2–10× 1 and 120× 2–20× 1 produced approximately equal results. The com-
parison with FEM results by Gartling [20] shows excellent agreement of eddies properties, see
Table VIII. Comparing approximately equal grid density, his A-grid and our 60× 2–10× 1,
the BEM results are signi�cantly better. Comparison of BEM results by Grigoriev [6] with our
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Figure 24. Backward-facing step �ow at Re=800. Distribution of vorticity along lower (left) and upper
(right) wall for all grid densities.

Table VIII. Backward-facing step �ow Re=800. X 1 length of lower wall eddy, X 2
separation X 3 reattachment and L2 length of upper wall eddy, m mass balance.

Grid Nsub Nnodes X 1 X 2 X 3 L2 m (%)

BEM 30× 2–6× 1 180 1440 6.78 5.51 11.04 5.53 0.50
BEM 60× 2–10× 1 600 4800 6.12 4.90 10.63 5.73 0.11
BEM 120× 2–20× 1 2400 19 200 6.10 4.86 10.51 5.65 0.01
Gartling FEM A-grid 720 6480 5.81 4.79 10.48 5.69
Gartling FEM E-grid 32 000 28 8000 6.10 4.85 10.48 5.63
Grigoriev BEM 558 8920 6.10 4.85 10.47 5.62

Table IX. Backward-facing step �ow Re=1000. X 1 length of lower wall eddy, X 2
separation X 3 reattachment and L2 length of upper wall eddy, m mass balance.

Grid Nsub X 1 X 2 X 3 L2 m (%)

30× 2–6× 1 180 7.70 6.31 13.23 6.92 0.57
60× 2–10× 1 600 6.71 5.37 12.89 7.52 0.13
120× 2–20× 1 2400 6.55 5.17 12.67 7.50 0.01

results shows a minimal advantage of recirculation length order 0.02 by Grigoriev. We should
note that Grigoriev has included the inlet region, therefore the comparison is not exactly in
place.
Is Re=800 steady-state? We should mention that there has been some controversy about

whether there is a steady-state for 2-D �ow over backward-facing step at Re=800, see Ref-
erences [21, 22]. Based upon our work, it appears that a steady-state solution does exist. The
presented BEM numerical algorithm is stable even at Re=1000 producing a steady-state so-
lution at all grid densities (see Table IX). The upper wall vorticity wiggles at coarse grid
30× 2–6× 1 increased with higher Re number value, see Figures 24 and 25, while results
between �ner grids agree well (see Figures 26 and 27).
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Figure 25. Backward-facing step �ow at Re=1000. Distribution of vorticity along lower (left) and
upper (right) wall for all grid densities.

Figure 26. Backward-facing step �ow at Re=800. Stream function contours on �nest grid. Level values
are −0:030, −0:025, −0:020, −0:015, −0:010, −0:005, 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,

0.45, 0.49, 0.50, 0.502, 0.504.

Figure 27. Backward-facing step �ow at Re=800. Vorticity contours on �nest grid. Level values are
−8:0, −6:0, −4:0, −2:0, 0.0, 2.0, 4.0, 6.0, 8.0, 10.0.

8.4. Flow in a Z shaped channel

Since the BEM are sensitive to singularities in stresses at concave corners 
¿180◦, see Ref-
erences [9, 23], the aim of this test case is to demonstrate the e�ectiveness of presented BEM
numerical algorithm and stream function vorticity formulation of Navier–Stokes equations on
the test example of the �ow in the Z shaped channel with two such concave corners. The
geometry and boundary conditions are shown in Figure 28.
Two equidistant grids are used. Coarser grid A using 900 rectangular subdomains with

�x=�y=0:1 and �ner grid B using 3600 subdomains with �x=�y=0:05, see Table X
(see Figure 29). Time step �t=1:0 is used. Under relaxation factors are URF =1:0 for

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:815–847



844 M. RAM�SAK AND L. �SKERGET

outlet

ψ =-2y3+3y2

ψ =0

ψ =0

ψ =0

ψ =1

ψ =1

ψ =1

(0,0)

(0,1) (4,1)

(7,-1)

(7,-2)(3,-2)

inlet
vx=-6y2+6y

Figure 28. The geometry and boundary conditions for the �ow in a ‘Z’ channel.

Table X. Flow in a Z shaped channel, grid properties,
Nit number of iterations and m mass balance.

Grid properties Re=100 Re=200

Grid Nsub �x=�y Nit m (%) Nit m (%)

A 900 0.1 219 0.039 216 0.067
B 3600 0.05 207 0.005 220 0.007
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Figure 29. Flow in a Z shaped channel Re=100 �nest grid, stream function contours. Contour levels:
A= − 0:03, B=0:0, C=0:1, D=0:25, E=0:5, F =0:75, G=0:9, H =1:0 and I =1:03:

stream function, URFw
 =0:10 for domain vorticity and URFw	 =0:40 for boundary vorticity
at both Reynolds numbers value. The convergence criterion is 10−4. The results agreement
between both grids is very good.
From the vorticity contour plots it is not obvious that near both concave corners the vorticity

local extreme is obtained, see Figures 30–32. This should be explained in more detail. Exactly
at the concave corner the obtained wall vorticity is approximately zero. After that, vorticity
rapidly increases in both wall directions. The local maximum appears immediately after the
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Figure 30. Flow in a Z shaped channel Re=100 �nest grid, vorticity contours. Contour levels: A=−10,
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Figure 31. Flow in a Z shaped channel Re=200 �nest grid, stream function contours. Contour levels:
A= − 0:03, B=0:0, C=0:1, D=0:25, E=0:5, F =0:75, G=0:9, H =1:0 and I =1:03.

corner in the main �ow direction. For the case Re=200 the maximum vorticity at the upper
concave corner is approximately 120 and at lower concave corner −180 at grid B. At lower
grid density A these values are approximately 80 and −120, respectively. Obviously, these
values are strongly grid dependent. In this case these values are also global maximums.

9. CONCLUSIONS

An accurate and stable BEM numerical scheme has been proposed and established to solve a
general form of parabolic di�usion–convection type of governing equation.
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Figure 32. Flow in a Z shaped channel Re=200 �nest grid, vorticity contours. Contour levels: A=−10,
B= − 5, C=0, D=5 and E=10.

One of the original features of the proposed method lies in the continuous approximation of
function and normal �ux using the subdomain technique. In the domain gradient continuity is
required. Next, the obtained overdetermined and sparse system matrix is solved using the fast
iterative linear least squares solver. The developed numerical algorithm for solving the general
di�usion–convection equation is applied to solve a stream function-vorticity formulation of
Navier–Stokes equations. Vorticity boundary conditions at walls are computed implicitly as a
result of stream function transport equation.
Accuracy of proposed numerical scheme was demonstrated on the scalar di�usion in ‘L’

shape domain, see Table III, where corner value is practically equal to analytical solution. The
solutions of a driven cavity �ow show an excellent agreement with the reference solution at
the extremely coarse grid densities, while both FEM and FVM fail to account viscous e�ects
at this grid density, see Figures 8–12. The same conclusions can be reached in the case of
a �ow over backward-facing step, see Table VIII. The accuracy of BEM is evident, but the
CPU consumption is much higher in comparison with FEM and FVM.
Stability of the presented BEM formulation is shown for the driven cavity �ow at the

Reynolds number of 50 000. The poly-regioned BEM by authors Grigoriev and Dargush [6]
accomplished results only to the Reynolds number 5000, while at 7500 diverged. They used
a velocity dependent fundamental solution, while the Helmholtz fundamental solution, used
in this paper, has the velocity free kernel, thus saving CPU consumption.
Complex geometry test case of the Z shaped channel shows regularity of developed nu-

merical technique for concave corners using the stream function-vorticity formulation.
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